Dougherty Valley HS Chemistry - AP Solutions – More Ksp Practice

Name:

Worksheet #9

Seat#:

Period:

Perform the following calculations, be sure to include units and show work to an AP level.
1) The molar solubility of NiCO₃ is 3.74 x 10⁻⁴ mol/L. Find the Ksp value 1.4 x 10⁻⁷
2) The molar solubility of Ca(OH)₂ is 6.875 x 10⁻⁶

1)	The molar solubility of NiCO ₃ is 3.74×10^{-4} mol/L. Find the Ksp value, 1.4×10^{-7}	2)	The molar solubility of Ca(OH) ₂ is 6.875 x 10^{-3} mol/L. Calculate the Ksp value. 1.3×10^{6}
3)	The Ksp of Ag ₃ PO ₄ is 1.8×10^{-18} . What is the [Ag ⁺] in a	4)	$Mg_3(AsO_4)_2(s) \rightleftharpoons 3 Mg^{2+}(aq) + 2 AsO_{4^{3-}}(aq)$
	saturated solution? $4.82 \times 10^5 M$		The solubility of magnesium arsenate is very low. Based on this, which of the following is/are true?
			a) There is a significant [AsO $_4^{3-1}$] in solution
			c) At equilibrium, there is almost no $Mg_3(AsO_4)_2$ left
5)	The Ksp for lead (II) phosphate is 1.0 x 10 ⁻⁵⁴ . Calculate	:	
	a) Molar solubility		
	b) The $[PO_{4^{3}}]$ in a saturated solution		
	c) and the solubility in grams per liter.		
6)	The Ksp for PbF ₂ is 4.0×10^{-8} . Calculate:		<u>6.21 X 10 ⁻² MOI/L, 1.24 X 10 ⁻⁴ M, 5.04 X 10 ⁻⁹ g/L</u>
	a) Molar solubility in a solution of 0.5 M NaF		
	b) Molar solubility in water.		
	c) Evelopeda differences in a beliktedes a set	بنعان	
	c) Explain the difference in solubility that you calci	ulate	α.
1			7

<u>1.6 x 10⁻⁷ mol/L, 2.15 x 10⁻³ mol/L</u>

7)	The Ksp of Mg(OH) ₂ is 1.8 x 10 ⁻¹¹ . What effect would each of the following changes will have on the solubility of Mg(OH) ₂ in an aqueous solution? Explain.				
	a) Decr	ease the pH			
	b) Incre	asing the pH			
	2)				
	a) A -1-1:				
	C) Addii	ng NH ₃ to the solution			
	d) Addii	ng Mg(NO ₃) ₂ to the solution			
8)	Based on	Le Chatelier's principle, explain what will happen to the solubility of AgCN when			
0,					
	a) HCIC	14 IS added to the solution			
	b) NaCI	N is added to the solution			
	,				
9)	9) Based on Ksp values, which has a greater molar solubility between MgF_2 (Ksp = 5.16 x 10 ⁻¹¹) and				
	Pbl ₂ (Ksp	= 9.8 x 10 ⁻⁹)? Justify your answer.			
10	Based on	Ksp values, which has a greater molar solubility between MgF ₂ (Ksp = 5.16 x 10 ⁻¹¹) and			
MgCO ₃ (Ksp = 3.5×10^{-8}). Justify your answer.					
11	Based on	the Ksp values in the table below, a saturated solution of which of the following would have the highest			
	concentra	tion of chloride ions? Justify your answer.			
	Compound	K _{sp}			
	PbCl ₂	1.2×10^{-5}			
	CuCl	1.6×10^{-7}			
	AgCl HgaCla	1.8×10^{-10}			
	1152012	1.4 × 10			

 12) Identify the compound that has the smallest Ksp value from the following general ionic compounds and their molar solubilities in pure water. a) M X malar solubilities = 2.52 m 40.4 M 				
a) M_2X , molar solubility = 3.52 x 10 ⁻⁴ M				
b) MX ₃ , molar solubility = $2.54 \times 10^{-4} \text{ M}$				
c) MX, molar solubility = $4.23 \times 10^{-4} \text{ M}$				
13) What is the required minimum pH to completely precipitate Cd(OH) ₂ (Ksp = 2.5×10^{-14}) so that the remaining concentration of Cd ²⁺ (aq) is less than 1.0 part per billion (1 ppb = 1 µg/L, 1 µg = 1×10^{-6} g)? <u><i>pH</i> 11.22</u>				
 14) The [Pb²⁺] and [AsO₄³⁻] in a certain saturated Pb₃(AsO₄)₂ solution are both equal to 8.3 x 10⁻⁸. In a saturated solution with [Pb²⁺] = 0.0200 M, what is [AsO₄³⁻]? <u>7.0 x 10⁻¹⁶ M</u> 				
 15) Lead (II) chloride, PbCl₂, is a sparingly soluble salt with a solubility product (Ksp) of 1.60 x 10⁻⁵ at 25°C. Calculate the molarity of a saturated solution of PbCl₂ at 25°C. <u>0.0159 M</u> 				
16) The images below show solutions of Cu_2CO_3 where the grey spheres represent the Cu^+ ions, and white spheres represent the $CO_3^{2^-}$ ions. Note that other ions may be present in the solution but are not shown. Image (i) shows the solution in equilibrium with solid Cu_2CO_3 .				
a) Using diagram (i) calculate the value of Ksp for Cu ₂ CO ₃				
b) Calculate the Q values for diagrams (ii) – (iv)				
c) Which of the solutions shown in images (ii) – (iv) will form a solid Cu_2CO_3 precipitate? Explain.				

